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Abstract. Using the Landau-Lifshitz equations and the equation for acouslic waves, a
formula describing the steps in the dependence of domain-wall velocity v on external
magnetic ficld I/ is obtained. The analysis leads to the conclusion that a ‘break’ can
be observed in the maximum of the H(v) dependence (i.e. a jump in the differential
mobility of the domain wall) caused by a change in the contributicn of long-wavelength
acouslic waves 10 the dissipation function. An approximation for the H(v) dependence
describing such a jump is proposed. The possibility of the existence of a second maximum
on the H(v) curve at velocities less than the speed of sound is demonstrated.

Magnetoelastic interaction is known to Jead to thc appearance of steps in the magnetic
field dependence of domain-wall velocity in weak ferromagnets. This has been
reviewed both experimentally and theoretically in [1] and discussed in detail in [2].
Domain-wall motion induces an elastic deformation field. This causes an additional
magnetic energy dissipation in addition to the ordinary ‘viscous’ one due to elastic
energy dissipation. The conversion of magnetic energy into sound energy occurs
at a maximum rate when the domain-wall velocity is equal to the speed of sound.
Therefore, as the former approaches the latter, the drag force acting on the domain
wall increases. As a result, ‘steps’ (regions of small slope) appear in the magnetic
field dependence of the domain-wall velocity, the locations of the steps coinciding
with sound speeds [1, 2].

In the present paper macroscopic equations of motion of the simplest one-
dimensional model taking this effect into account are given. The formula for resonant
encrgy loss is obtained starting from the energy balance equation and is similar
to formulae of [2]. Analysing this formula, it is concluded that the differential
mobility of the domain walls changes abruptly when the domain-wall velocity equals
the sound velocity. This jump in mobility is caused by an increasing contribution
of long-wavelength acoustic waves to the energy dissipation when the domain-wall
velocity approaches the speed of sound. In order to describe the jump in domain-
wall mobility accurately, we write a drag force approximation differing substantially
from the Lorentzian proposed in [2].

Consider a two-sublattice weak ferromagnet, with the magnetizations of the
sublattices denoted as M, and M,, with {M,| = |M,] = M, The vectors of
ferromagnetism and antiferromagnetism are defined conventionally as
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(m24+ (D=1 (m-1) =0 (1)
We take as the energy density for a weak ferromagnet (see for example [3])t:
w= M{16(m)? + La(VI)? + 1B — 1812 4+ [d- (I x m)] ~2(m - h)

+ fijan(lil; — iE")lﬁ-"))ukn} + 3N kn Uij Ykn ()]

where wu;; is a deformation tensor, A;; .. and f;. .. arc tensors of elastic and
magnetoelastic constants respectively, h = he, is the normalized magnetic field,
d= de, with d being the Dzyaloshinskii constant, B > 0 and 8 > 0 are magnetic
anisotropy constants, and é and « are exchange constants. Let us also assume the
dissipation function:

A .
F= %/(m[(Ml x H\)? + (M, x Hy)}| + prij,knuijukn) av (3)

with H; = y6W/6M; (i = 1, 2) being effective ficlds, W = [wdV the internal
energy, A the damping constant of spin waves, v the gyromagnetic ratio, T';; . the
tensor of damping constants of sound, and p the mass density of the material. The
orders of magnitude of material constants are assumed to be close to those in rare-
earth orthoferrites: M, ~ 10° G, § ~ 10°-10%, a ~ §a? with a ~ 1077 cm being the
crystal lattice parameter, d ~ 1-10, B 2> 3, 3 ~ 0.1-1, f ~ 10, the sound velocity
sy~ 10° cm s~!, A ~ 10~5-10-4, the natural time unit 2/(yM,) ~ 107 s, p~ 10 ¢
cm~3 and ' ~ 1 cm? s—!. The Landau-Lifshitz equations including relaxation terms
R, = -y 8F/5H, [4, 5] have the form

OM, /ot =(M;x H)—~v6F/6H; i=1,2. €]
Following [6-10] we can use the relation

m = (1/8)(2h ~ (- h)] + (I x d) — (1 x D)} ©)
to eliminate m, and reduce (4) (in the long-wavelength limit) to the single motion

equation of unit vector I (jmn| « ]I} ~ 1). This-equation can be written in the
following Lagrangian form [8-10): )

d (6L L 1 6F
l — |-+ === =0 6
[x(dt(él) 61+M§51)] ©
The Lagrangian L contains magnetic, elastic and magnetoelastic terms:

L=Ly+Lg+ Ly Q)

with
Ly = / (21_6(:')2 = S(VD? - (1) + %th- (Ix 1] - %u +(h % d)l) v

t In this expression only the anisotropic exchange term is taken into account; the small spin-orbital
energy d'(mzlz + m ;) is neglected,
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where

; B 1 2
w, (1) = -2—13 - gti + 551 d)’ + RO h)?

2
p [du
LE=_[[5 (E{) - %"-‘f,kn"uukn] av

Ly = —/ Fijen (8 — ESU)E_E'U))ukn av.
The acoustic wave equation is written by means of Lagrangian (7) as follows:
(d/dt)(SLf6w)— 6Lf6u+ 6F /G =0. ®

Equation (8) is an inhomogeneous linear equation for the components of the
deformation vector u. Its solution is

F ] - 8 ! 1
u’ =/GIJ(T' -r ,t -1 )fkﬂ:,jp a_x_’([k(r ,t’)ln(r", t’)) dV dt’ (9)
r

where G;;(r —r',t — t') is the Green function tensor of the equation
(dfdi)(BLgféu) —Lp/bu+ 6F /&0 =0, (10)

Substituting expression (9) into equation (6) we obtain an equation for the distribution
of magnetization in a domain wall,

We apply this general theory further to a particular case of a one-dimensional
domain wall in a weak ferromagnet (7) travelling along the y axis. Let also B >» 3.
In this case

A, =cosO l,=0 [, =sindg
and equations (6) and (8) reduce to
(a—v2/6)d?8/dt? 4+ Avd6/dE —(2hd/6)sin 0 —(3/2)sin(20) = f(du/dE)sin(26)
_ (11)
Mod®u/dg® + (v? — of) u/dg? = (fM&/'s').(d/dzf)(sin2 0) (12)

Where 0 = G(E)' u = 1‘(6)? E = y - Ut’ U = uy’ f = fzz,yy - f:u:,yy’ F = Fyy,yy’
and sy = /(A ,,/p) B the velocity of longitudinal sound waves. The following
expression for du/d¢ is derived from equation (12) by means of the Green function:

du MG j*“’ exp(ik€) _/+°° L2 .
T "I ) (sﬁ—vz)—il‘kvdk . sin® 8(n) exp(—ikn) dn. (13)

An equation for the function #(£) is obtained by substituting (13) into (11):
(1 —12/ab)d?8/d8% + (Av/a)dd/de — (2hd[ab)sing — (3/2a)sin(26)

__PMi *oo exp(ik€)
T 2map sin(26) ,/_m (83 —v?) —iTkv dk
+oo
x f sin’ 8(n) exp(—ikn) dn. (14)
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Depending on the value of the parameter TI', either the inequality
(f2ME]Bpsy)/(afB) 2 T or the reverse one ( f2M2/Bpsy)v(a/B) <« ' holds.
In the first case, the order of magnitude of the right-hand side of equation (14) is
_ comparable to that of the last term on the left (see appendix). As a consequence,
the question arises of the existence of a solution in the form of a domain wall at
v ~ s, where the deformation du/d{ reaches its maximum. Therefore a gap can
appear in the velocity spectrum of the domain wall. This fact is evident in the case
I' = 0 when the integral in (13) is transformed into sin® 6 up 10 a constant factor
and integro-differential equation (14) is reduced to a differential onej. Values of
material constants chosen in the present paper satisfy (f2ME/Bps;)(a/8) < T.
In this case the gap in the velocity spectrum does not appear since, for any value
of the variable 6, the last term on the left of equation (14) is much larger than the
right-hand term.

Substituting (13) into the relation

dW/dt = -2F
onc obtains the well known energy balance equation
+o0 2 2 pf26 +c0 2
h= [T (R) e+ i [ et
4d J_ ., \d¢ 8rplvd J_o [(s§—v2)}/(Tv)]2+ k2

+o0 2
x / sin? 0(n) exp(ikn) dn| . (15)
The integral in the second term of (15) has the form:
e k2 f(k)
= dk 16
Ik = [~ e (16)
where
s2 —p2 +oo 2.
ky = 3 sy =1 [ sin® o(n) expCik) d|
v oo

In the limit of large l-c:uA, A = \/[(a — v?)/(36] being the thickness of the domain
wall, integral (16) can be expanded in an asymptotic series:

I(k e k 3 1)+ (kz)n dke = — i sz(k)dk+0( ! )
(k)= [ 5 IS0 () =g ) | )
In the opposite case, kA being small, this integral is expanded as follows:

Y el 5 (€O i 2 [T f(k)
I(ku)_j_m _—kﬁ+k2dk—j_m f(k)dk k“/_m —kf,-{—kz

" k—k2f(O v _dk k?
= [ wak-ko [ pTn -

oK)= T g
= [ sw k- nsom - [ IO gt ooay)

.2
—o0 -0 k

t Uchiyama e af [11] have invesligated this differential equation previously and proved the existence of
the gap in the velocity spectrum of the domain wall. Zvezdin and Popkov [12] have also studied the case
T#0
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where we take into account that

2

flk)=

+oo
[ sin o(n) explikn)

—Co

is even and hence may be expanded in an asymptotic power series in k2. The series
coefficients at even powers of k; are integrals regularized in the sense of generalized
function theory. At f(0) # Ot the maximum point of the dependence h(v) is its
cusp (a discontinuity of its first derivative), with jump in derivative described by the
term —x f(0)|kyl-

In order to elucidate the cause of this singularity, let us remark that according to
formula (13)

du toe .
3 = . A(k) exp(ik€) dk

where Fourier transform A(k) is expressed as
A(k) = U(k)/(k + iky)

the function I/{k) depending on the structure of the domain wall. It is at once
apparent that, in the limit of small k, A(k) =~ U(k)/k in the case k; = 0 and
otherwise (when ky # 0) A(k) = U(k)/iky. It is also evident that at |k} > |k the
Fourier transform A(k) depends weakly on the variable k,;. The dissipation function
of elastic waves can be written to within a factor independent of this variable as
follows:

+0a
F~ f |A(k)|*k? dk.

For small k the spectral density of the dissipation function under the condition
ky = 05 |A(k)}2k? =~ {U(0)]>. On the other hand, in the case k, 7 0 one can put
|A(k)|%? ~ [U(0)[>k?/k? over the range —|ky) < k < |k,|. Thus the dissipation
function for small but non-zero values of the parameter &, is different from that for
v = s, (i.e. ky = 0) by

) | kol s 4 5
voP | (k—ﬁ_l) dk = ~HUO) k.

~{ ke

In other wotds, the jump in the domain-wall mobility at v = s is caused by a change
in the contribution of long-wavelength acoustic waves to the dissipation function.

t Solution (13) of equation (12) meets the condition f{Q) 5% 0 because of the appropriate structure of
equations {11) and (12). However, in the general case

+oo . 2
f(k) = [[_ fizpenli(€)1;(€) exp(ik€) df

and it is clear that this expression depends on the symmetry of the magnetic material and the direction
of domainwall movement. Therefore, the case f{0) = 0 is actually possible.
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The order of magnitude of the above-mentioned characteristic wavelength can be
evaluated as follows. Under the conditions |sy — v| ~ 10 m s~! = 10° cm s~!
and T ~ 1 cm? s~!, the latter corresponding to rare-earth orthoferrites at room
temperature, the dissipation function decreases over the spectral range |k| <
2lsy — v|/T ~2 x 10° cm~1, the respective wavelength being more than 30 um.

In [2] the Lorentzian (formula (22) of [2]) has been substituted for the delta
function in the expression for the drag force acting on the domain wall (formula
(13) of §2]). This transformation corresponds to formula (15) of our paper. The
authors of [2] have assumed that integral (16) of our paper can be approximated by a
Lorentzian. It is clear, however, that no Lorentz approximation allows the description
of the above jump in differential mobility. The formulae given in [2] must be refined
in this respect.

This refined approximation can be obtained by constructing the succession of
Padé approximations for integral (16), ie. rational approximations, with values of
their coefficients being derived from the condition that the first few coefficients of
their Taylor series are equal to those of the approximated function (16)t.

Let us assume initially that f(0) = 0. In this case, k, = 0 is a parabolic maximum
point of integral (16). The respective Padé approximation must be maximized at the
same point with just the same maximum value. In the limit k, — co coefficients at
kg Z and ky % in the asymptotic series of the Padé approximation have to be equal to
those of (16). The Lorentz approximation proposed in [2] is evidently the simplest
one.

h~(Av8/4d) P + (f2M26/8rpTvd)QR/(K2Q + R) an

where
+oo 9 2 +oo

R=2r "~ (%[fij,knls(f)fj(ﬁ)])z d¢

-0

the integration variable k in the integrals ¢ and R being substituted by £ with

equality
+00 +co
/ ‘ ] & () exp(ik) dz

Now let f(0) # 0. As mentioned above, in this case integral (16) is a series in
integer powers of variable |ky| but not k3. The three-point Padé approximation of
integral (16) is constructed as a rational function of vatiable |k,|, with its maximum
value, the Taylor coefficient at |k, and the latter at & being accurate. One assumes
also in the limit k; — oc the asymptotic series coefficient at kj 2 to be accurate and
that at |ky|~? to vanish. These conditions can be met with the following function:

Avéd FAM2é Q + ARkl

h ~ P
ad ' T 8xpTvd 1[5 + AR)/QIkol + (QF ROKE + AlkP

2 400
dk = 27r/ |0 (=) de.

o0

(18)

t Constructing the succession of Padé approximations can be considered as a procedure to calculate
integral (16). The first few Padé approximations turn out to give the value of this integral with a fair
accuracy.
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-

Assuming parameters A, f2 and h in equation (14) to be small, we can formulate
a perturbation theory in A and f2. For the kink-type solution describing a2 domain
wall, the perturbation theory has to be formulated for variable V = df8/d¢§ = V(4),
where 0 € 8 < w. In such a case V' and h are expressed by perturbation theory
series as o

V(8) = Vy(8) + Vi(8) + V4(8) +... h=h,+hy+...

the zero-order approximation V4(#) corresponding to a kink of the sine-Gordon
equationf. The condition for the absence of secular terms in the expression for
V,(6) can be written in the form of the energy balance equation (15), h and 6(¢)
being substituted respectively by h, and zero-order approximation 8,(£) written as

G(E) = 0y(€) = 7w — cos~! tanh [E (-&%—{;)

Thus we obtain
AVB&I Ty T fPMETv( b — v?)?
2d\/(aé — v?) 8pf26d

o0 K Lrk [fas—12
inh=2 | 25, /[ 22 =27 .
xfw(%—wv+mmw““ [2 (*557)] ok o

h~h; =

The approximation (18) for dependence h{wv) can be written accordingly as follows:

APy FEME6 1+ LAk
2d\/(cb ~v?) " 3pTvd 14 LA|k| + 3A2K + A3k

B by 9)

1 Formulae of this perturbation theory derived for another problem have been written in the appendix
of [13]).
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The dependence h(v) in normalized units for a number of values of the model
parameters is shown in figures 1-3, Padé approximation (20) gives coincidence with
(19) within 2% accuracy for all three dependences; therefore, only one curve is shown.
The normalized units are derived from such a form of formula (19):

2df(ab—v?) v 750 +oe ztdz

Hi=h = —
! L AB26Y2s, Sg "v [ {[D(v/sy— 83/v))® + 22} sinh® 2

where ,
22 M2 (b —v?) wsy | b —v2
Fy,= 5 D=—y/| ——).
nlpl'stABs 2r 36
The calculations were carried out with the condition v? < «é. It is seen that,
depending on the relationship between model parameters, there can exist a hysteresis
of the dependence v(h) (this fact was discussed in [2]). This hysteresis means in

practice that there is a non-stationary motion of the domain wall within the region
of the hysteresis loop [1].

Q
" o
™
wn
o~ tn
o
(=)
~ >
o~
n
£ «n
o o
i n
[+ =3
Q.0 0.5 1.6 1.5 "2.0 2.5 3.0 G.0 6.5 1.0 1.5 2.0 2.% 3.0
v v

Figure 2. 'The dependence Ho{wv/cg) of hysteresis  Figure 3. The dependence Ho(w/cg) with two
type; D= 4, Fy = 0.15. maxima; D) = 0.25, Fy = 0.35.

It is also of interest that, depending upon the relationship of F, and D, the
second maximum at v < s, can appear due to the factor 1/v in the second term of
(15). As seen from expression (13), besides a decrease of deformation with increasing
domain-wall velocity, there is also a resonant increase of the deformation as &k, — 0,
the former and the latter being described respectively by factor 1/v and denominator
1/(k + ik,). Within some region of the parameters F, and D, the competition
between these effects over the range 0 < v < s, tauses the second maximum (at
v <.sy) to appear. Providing there is no jump in mobility of the domain wall,
ie. in the case U(() = 0, the same factor 1/v causes the resonant velocity to
become smaller than s, the effect is similar to a shift of normal frequency of
a harmonic oscillator with damping. The appearance of the second maximum in
the h(v) dependence leads to the second instability region at v < s, (or even
v € sy). Such an instability was observed in experiments [14], and we think that
the mechanism presented above can serve as one possible explanation (besides the
mechanisms proposed earlier, see e.g. [13]).
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Appendix

It is known [12] that a gap can appear in the velocity spectrum of the domain wall
only for sufficiently small dissipation of acoustic waves. In our consideration this
corresponds to the case when the right-hand side of equation (14) is comparable
to (or larger than) the last term on the left. Since both terms under consideration
contain common factor sin(26), we shall compare only the coefficient 5/(2«) with
the following integral:

szgf"'“’ exp(ik€) dk +eo

-2 .
T ) o (B v?) —TThv |, SN Omep(=ikn)dy. (Al

The value of the latter can be estimated using an asymptotic series similar to that
for integral (16). In the case |k;A| > 1 we obtain

+oo : . +oo
[T R [ sn o) exp(—ikm) d

oo (sE—v?)—ilkv foo

]
_4_Sin" 8(n) 1
_21r3(73,~v2 1+O(_—kuA .

Substituting this equality into (A1) we obtain the condition for the absence of a gap
in the velocity spectrum in the case |kyA| > 1 as

FAMZsin® 6(€)
ap(sd — v?)

8

< 5 (A2)

Checking (A2) with the condition for its use:

2 2 2 2 2
At 1Si— v ab—viy s —vt| [fo
ko= | =3 ( 46 )‘ T'sg (ﬁ) > 1

and considering inequality |sin 8(¢)] € 1 one concludes that fulfilment of the
inequality

T > (S2M{/Bosy)V(c/B) (A3)

results in fulfilment of condition (A2) at {k;A| > 1.
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On the other hand, consideration of the series expansion of integral (A1) under
condition |kyA| < 1 leads to the following order-of-magnitude estimate:

+oo exp(ik&) dk +oo ) ‘
/w (53— 00— 1Tkv gy (n) exp(—ikn) dn

+oC
= 22 (10u(-kuf) (ko sgncie) + Ou(e)l [ sin® o) an

¢ 2x [t 2nA
- [ sina(nyan )it + OCkod)] ~ ZZ [ sin? o(m) on ~ T
—0a —o0 0

where ©y(€) is the Heaviside function. Substituting this estimate into (Al) results
in the following condition for the absence of a gap in the velocity spectrum in the
case |k,Al < 1

FAIMEA[apTsy =~ (fAME[apls))/(afB) < B/2a

which is identical with inequality (A3). Thus inequality (A3) is a sufficient condition
for the absence of a gap in the velocity spectrum in both cases |kyA| > 1 and
|kyA| < 1. Therefore no gap in the velocity spectrum of the domain wall appears if
(A3) holds.
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