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AbrlrscL Using lhe landau-Lifshitz equations and the equation for amustic waves, a 
formula describing the steps in the dependence of domain-wall Velocity U on edema1 
magnetic field H i oblained. me analysis leads 10 the conclusion lhal a ' b m v  a n  
be O & N ~  in the maximum of the H ( v )  dependence (i.e. a jump in the diKerential 
mobility of the domain wall) caused by a change in the mntribulion of long-wavelength 
acoustic waves l o  the dissipation funclion. An approximation ior (he H ( v )  dependence 
describing such a jump proposed. ?he puib i l i ly  of Ihe cxislence of a second madmum 
on the H ( u )  "e a1 velocities less Ihan the speed of yrund is demonslraled. 

Magnetoelastic interaction is known to lead to thc appearance of steps in the magnetic 
field dependence of domain-wall velocity in weak ferromagnets. This has been 
reviewed both experimentally and theoretically in [l] and discussed in detail in [Z]. 
Domain-wall motion induces an elastic deformation field. This causes an additional 
magnetic energy dissipation in addition to the ordinary 'viscous' one due to elastic 
energy dissipation. The conversion of magnetic energy into sound energy occurs 
at a maximum rate when the domain-wall velocity is equal to the speed of sound. 
Therefore, as the former approaches the latter, the drag force acting on the domain 
wall increases. As a result, 'steps' (regions of small slope) appear in the magnetic 
field dependence of the domain-wall velocity, the locations of the steps coinciding 
with sound speeds [l, 21. 

In the present paper macroscopic equations of motion of the simplest one- 
dimensional model taking this effect into account are given. The formula for resonant 
energy loss is obtained starting from the energy balance equation and is similar 
to formulae of [Z]. Analysing this formula, it is concluded that the differential 
mobility of the domain walls changes abruptly when the domain-wall velocity equals 
the sound velocity. This jump in mobility is caused by an increasing contribution 
of long-wavelength acoustic waves to the energy dissipation when the domain-wall 
velocity approaches the speed of sound. In order to describe the jump in domain- 
wall mobility accurately, we write a drag force approximation differing substantially 
from the Lorentzian proposed in [Z]. 

Consider a two-suhlattice weak ferromagnet, with the magnetizations of the 
sublattices denoted as M I  and Mz,  with IM,I = lMzl = MO. The vectors of 
ferromagnetism and antiferromagnetism are defined conventionally as 

TIL = ( M I  + M*)/ZM" 1 = (MI - Mz) /2M" 
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(nap + (1)' = 1 ( m .  I )  = 0. (1) 

We take as the energy density for a weak ferromagnet (see for example [3])t: 

w = M i { $ 6 ( m ) 2  + ;a(VI)'+ ;Bl: - ip l ;  + [ d . ( l  x m)] -2(nt .h)  

(2) + f.- (lilj - l i  (U) l j  (U)) UkJ + fXij ,k ,Uijuh,  v , k n  

where uij is a deformation tensor, Ai, ,kn and fij,kn are tensors of elastic and 
magnetoelastic constants respectively, h = he, is the normalized magnetic field, 
d = de, with d being the Dzyaloshinskii constant, B > 0 and p > 0 are magnetic 
anisotropy cmstants, and 6 and a are exchange constants. Let us also assume the 
dissipation function: 

with Hi = y 6 W / 6 M i  (i = 1, 2) being effective fields, W = J w d V  the internal 
energy, A the damping constant of spin waves, y the gyromagnetic ratio, rij,+, the 
tensor of damping constants of sound, and p the mass density of the material. The 
orders of magnitude of material constants are assumed to be close to those in rare- 
earth onhoferrites: Mu - l@ G, 6 - l@-104, o[ ... 6a2 with a ... cm being the 
crystal lattice prameter, d - 1-10, B '2 p, p - 0.1-1, f - 10, the sound velocity 
su ... l@ cm s-l, A - 10-5-10-4, the natural time unit 2/(7Mu) - s, p - 10 g 

and r - I cm2 s-I. The Landau-Lifshirz equations including relaxation terms 
Ri = -7 6 F / 6 H i  [4, 5] have the form 

aM;/a t  = (Mi x H i )  - 7 6 F / 6 H i  i = 1,2. (4) 

Following, (6-10) we can use the relation 

n b  = (1/6){2[h - l ( 1 .  /b)] + ( 1  X d )  - ( I  X I ) ]  (5)  

to eliminate m, and reduce (4) (in the long-wavelength limit) to the single motion 
equation of unit vector 1 ( 1 ~ ~ 1  11) e 1). Thisequation can be written in the 
following Lagrangian form [%lo]: 

[1 x (; ($) - 2 + '")I = 0. 
M i  61 

The Lagrangian L.contains magnetic, elastic and magnetoelastic terms: 

L = L , + L g + L m  (7) 

with 

o( 2 2 
2 6 6 L ,  = 1 (&(I) '- -(VI)'- f i , , ( l )  + - [ h .  (i x l ) ]  - - [ I  * ( h  x d)] 

t In this a-ion only lhe anisotropic exchange term is taken into account; the mal l  spin-orbital 
energy d'(m,f. + mZL) is neglected. 



Cusp in H-v for DW motion in RE orthofenits 8619 

where 

The acoustic wave equation is written by means of Lagrangian (7) as follows: 

(d/d1)(6L/6*) - 6 L / b u  + 6 F / 6 u  = 0. (8) 

Equation (8) is an inhomogeneous linear equation for the components of the 
deformation vector U. Its solution is 

U; =/Gjl (r  -r‘,t  - 1‘)fkn,jpm(lk(r’,l’)ln(r’,t’))dV’dt’ a (9) 

(d/dt)(t?LE/6u) - 6 LE/& + 6 F/&i  = 0. 

P 

where G;, ( r  - r’, 1 - 1‘) is the Green function tensor of the equation 

(10) 
Substituting expression (9) into equation (6) we obtain an equation for the distribution 
of magnetization in a domain wall. 

We apply this general theory further to a particular case of a onedimensional 
domain wall in a weak ferromagnet (7) travelling along the y axis. Let also B >> 0. 
In this case 

. l , = w s B  l y = 0  1, = sin 0 

and equations (6) and (8) reduce to 

( ~ ~ - v ~ / 6 ) d ~ e / d ( ~  + AvdB/d< -(2hd/6) sin 0 -(13/2) sin(28) = f(du/dE) sin(%) 

(11) 

(12) 

where e = e ( € ) ,  U = I & ( € ) ,  C = Y - ut ,  u = U,, f = f,,,,, - f.,,,,, r = ryy,yy, 
r t ~ d ’ u / d E ~  + (v2 - s;)d2u/d€’ = (fMi/p)(d/dF)(sinZ 0 )  

and so = ,/(Ayv,y,,/p) is the velocity of longitudinal sound waves. The following 
expression for du/d[ is derived from equation (12) by means of the Green function: 

An equation for the function @(E) is obtained by substituting (13) into (11): 

(1 -vZ/a6)d2e/dF2 + (Av/a)dB/d( - (Zhrl/ab)sine -(0/2a)sin(28) 

+m 
sin28(q)exp(-ikq)dq. 
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Depending on the value of the parameter r, either the inequality 
( f 2 M : / p p s u ) J ( a / P )  2 r or the reverse one ( f2M:/Pp.&/(a /P)  r holds. 
In the first case, the order of magnitude of the right-hand side of equation (14) is 
comparable to that of the last term on the left (see appendix). As a consequence, 
the question arises of the existence of a solution in the form of a domain wall at 
U E so, where the deformation du/df  reaches its maximum. Therefore a gap can 
appear in the velocity spectrum of the domain wall. This fact is evident in the case 
r = 0 when the integral in (13) is transformed into sin26 up to a constant factor 
and integrodifferential equation (14) is reduced to a differential onet. Values of 
material constants chosen in the present paper satisfy ( fZM: /ppso)J (a /P )  < r. 
In this case the gap in the velocity spectrum does not appear since, for any value 
of the variable 6, the last term on the left of equation (14) is much larger than the 
right-hand term. 

Substituting (13) into the relation 
dW/dt  = -2F 

one obtains the well known energy halance equation 

x I ~ ~ s i n 2 6 ( q ) e x p ( i k q ) d q  )1 
The integral in the second term of (15) has the form: 

where 

In the limit of large kuA, A = J I ( a 6  - v z ) / p 6 ]  being the thickness of the domain 
wall, integral (16) can be expanded in an asymptotic series: 

In the opposite case, kuA being small, this integral is expanded as follows: 

+m 
f(k) d k  - n f(0)lk"I - ktJtul f ( k C ) -  f(o) dk + O((kuA)3) kZ = 1, - C C  

t Uchiyaea d ol [I11 have investigated this differential equation previously and proved the existence of 
lhe gap in the velocity spectrum of the domain wall. Zvezdin and Popkov [I21 have also studied the case 
r # 0. 
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where we take into account that 

is even and hence may be expanded in an asymptotic power series in k2. The series 
coefficients at even powers of k, are integrals regularized in the sense of generalized 
function theory. At /(O) # O t  the maximum point of the dependence h ( u )  is its 
cusp (a discontinuity of its first derivative), with jump in derivative described by the 
term -r /( 0)l ICu I. 

In order to elucidate the cause of this singularity, let us remark that according to 
formula (13) 

where llmrier transform A ( k )  is expressed as 

A(k)  = u ( k ) / ( k  + ik,) 

the function U ( k )  depending on the structure of the domain wall. It is at once 
apparent that, in the limit of small k, A ( k )  r U ( k ) / k  in the case k,, = 0 and 
otherwise (when k,, # 0) A ( k )  zz U(k)/ik,. It is also evident that at lkl >> lk,,l the 
Fourier transform A( k) depends weakly on the variable k,. The dissipation function 
of elastic waves can be written to within a factor independent of this variable as 
follows: 

F - /'" IA( k)12kZ dk 
J - a C  

Fbr small k the spectral density of the dissipation function under the oondition 
k, = 0 6 IA(k)12k2 Y lU(0)12. On the other hand, in the case k,, # 0 one can put 
IA(k)12k2 E I U ( 0 ) ( 2 k z / k i  over the range -Ik,,l < k < Ilc,l. Thus the dissipation 
function for small but non-zero values of the  parameter k,, is different from that for 
2) = s,, (i.e. k, = 0) by 

In other words, the jump in the domain-wall mobility at U = s, k caused by a change 
in the mntribution of long-wavelength acoustic waves to the dissipation function. 

t Solution (13) at equation (12) meets the mndition f ( 0 )  # 0 because of the appropriate StNClure of 
equations (11) and (12). However, in the general case 

and it is clear that ulis apression depends on the symmetry of the magnetic material and the direction 
of domain.wall movement. Iheretore, the case f (0) = 0 is actually posrihle. 
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The order of magnitude of the above-mentioned characteristic wavelength can be 
evaluated as follows. Under the conditions Is,, - V I  - 10 m s-l = le cm s-l 
and r - 1 cm2 s-l, the latter corresponding to rare-earth orthoferrites at room 
temperature, the dissipation function decreases over the spectral range lkl < 
 IS,, - v l / r  - 2 x 16 cm-l, the respective wavelength being more than 30 pm. 

In [2] the Lorentzian (formula (22) of [2]) has been substituted for the delta 
function in the expression for the drag force acting on the domain wall (formula 
(13) of [2]). This transformation corresponds to formula (15) of our paper. The 
authors of [2] have assumed that integral (16) of our paper can be approximated by a 
Lorentzian. It is clear, however, that no Lorentz approximation allows the description 
of the above jump in differential mobility. The formulae given in [2] must be refined 
in this respect 

This refined approximation can be obtained by constructing the succession of 
Pad6 approximations for integral (16), i.e. rational approximations, with values of 
their coefficients being derived from the condition that the first few coefficients of 
their Taylor series are equal to those of the approximated function (16)t. 

Let us assume initially that f(0) = 0. In this case, k,, = 0 is a parabolic maximum 
p i n t  of integral (16). The respective Pad6 approximation must be maximized at the 
Same p i n t  with just the Same maximum value. In the limit ku -+ M coefficients at 
k;’ and k i 3  in the asymptotic series of the Pad6 approximation have to be equal to 
those of (16). The Lorentz approximation proposed in [2] is evidently the simplest 
one. 

E D Belokolos and 0 Yu Safronkov 

h r ( A v 6 / 4 d ) P +  ( f 2 M i 6 / S a p r v d ) Q R / ( k i Q +  R)  (17) 

where 

the integration variable k in the integrals Q and R being substituted by 
equality 

with 

Now let f(0) # 0. As mentioned above, in this case integral (16) is a series in 
integer powers of variable Ik,J but not k;. The three-point Pad6 approximation Of 
integral (16) is constructed as a rational function of variable lkol, with its maximum 
value, the Taylor coefficient at Ikol, and the latter at k: being accurate. One assumes 
also in the limit k, - 00 the asymptotic series coefficient at k;’ to be accurate and 
that at lkul-3 to vanish. These conditions can be met with the following function: 

t Conslrucling the SucCeuion of Pad6 appmximations (an be considered as a pmedure to (akulate 
integral (16). The Brst few Pad6 approximations tiim out to give the value of this integral with a fair 
accuracy. 
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O!O 0.5 1:O '1'.5 '2.0 m 0  Figure 1. 
hysteresis type; D = 0.5, Fo = 0.15. 

'he dependence Ho(u/co)  of non- " 

where 

Q J  Q3 5 
RS R2S R 

2 
A = - + - - -  S = n (J_f_,sin20(()d() 

Assuming parameters A, f* and h in equation (14) to be small, we can formulate 
a perturbation theory in A and fZ. For the kink-type solution describing a domain 
wall, the perturbation theory has to be formulated for variable V = dO/dc = V(O), 
where 0 4 I3 < T .  In such a case V and h are expressed by perturbation theory 
series as 

V(O) = V,(O) + VI(@) + V2(0) + .. . h = h, + h, + ... 
the zero-order approximation %(e)  corresponding to a kink of the sineGordon 
equationt. The condition for the absence of secular terms in the expression for 
VI(@) can be written in the form of the energy balance equation (15), h and e ( [ )  
being substituted respectively by h, and zero-order approximation e,(() written as 

Thus we obtain 
A@63/2v + n f 2 M : h ( a 6  - v ' ) ~  

8pp26d h - h  - - 2dJ( a6 - v 2 )  

The approximation (18) for dependence h ( v )  can be written accordingly as follows: 

t Formulae of lhis penu~alion lheory derived for another problem have been wrillen in the appendix 
of [13]. 
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The dependence h , ( v )  in normalized units for a number of values of the model 
parameters is shown in figures 1-3. Pad6 approximation (20) gives coincidence with 
(19) within 2% accuracy for all three dependences; therefore, only one curve is shown. 
The normalized units are derived from such a form of formula (19): 

E D Belokolos and 0 Yu Safronkov 

where 

The calculations were carried out with the condition v 2  < a6. It is seen that, 
depending on the relationship between model parameters, there can exist a hysteresis 
of the dependence v ( h )  (this fact was discussed in 121). This hysteresis means in 
practice that there is a nonstationary motion of the domain wall within the region 
of the hysteresis loop [l]. 

" " 
Flyre  2. The dependence H o ( v / c o )  of hysteresis 
type; D = 4, Fo = 0.15. 

Flgure 3. The dependence H o ( u / c o )  wilh WO 
maxima; D = 0.25, FO = 0.35. 

It is also of interest that, depending upon the relationship of Fu and D, the 
second maximum at v < s,, can appear due to the factor l / v  in the second term of 
(15). As seen from expression (13), besides a decrease of deformation with increasing 
domain-wall velocity, there is also a resonant increase of the deformation as k,, - 0, 
the former and the latter being described respectively by factor l / v  and denominator 
l/(k + ik,,). Within some region of the parameters F ,  and D, the competition 
between these effects over the range 0 < v < s,, duses the second maximum (at 
v < .sU) to appear. Providing there is no jump in mobility of the domain wall, 
Le. in the case U ( 0 )  = 0, the same factor l / v  causes the resonant velocity to 
become smaller than s,,; the effect is similar to a shift of normal frequency of 
a harmonic oscillator with damping. The appearance of the second maximum in 
the h ( v )  dependence leads to the second instability region at v < s,, (or even 
v < s,,). Such an instability was observed in experiments [14], and we think that 
the mechanism presented above can serve as one possible explanation (besides the 
mechanisms proposed earlier, see e.g. [15]). 
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Appendix 

It is known [12] that a gap can appear in the velocity spectrum of the domain wall 
only for sufficiently small dissipation of acoustic waves. In our consideration this 
corresponds to the case when the right-hand side of equation (14) is comparable 
to (or larger than) the last term on the left. Since both terms under consideration 
contain common factor sin(28), we shall compare only the coefficient p / ( 2 a )  with 
the following integral: 

The value of the latter can be estimated using an asymptotic series similar to that 
for integral (16). In the case IkoAl > 1 we obtain 

Substituting this equality into (Al) we obtain the condition for the absence of a gap 
in the velocity spectrum in the case IkoAl >> 1 as 

Checking (A2) with the condition for its use: 

and considering inequality (sin'fl(()I < 1 one concludes that fulfilment of the 
inequality 

r > ( fZMt /P~su)J(a /P)  (W 

results in fulfilment of condition (AZ) at IkoAl >> 1. 
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On the other hand, consideration of the series expansion of integral (Al) under 
condition IkuA1 1 leads to the following order-of-magnitude estimate: 

2 2nA sin e (q )  dq - - +m 

[ l+O($A)]  - "/ 
rso -m rs" 

< 
- L 

where OH(() k the Heaviside function. Substituting this estimate into (Al) results 
in the following condition for the absence of a gap in the velocity spectrum in the 
case Ik,,Al e;. 1: 

f 2 @ A l w r s 0  = (f2M~,r,Z/wrsu)J(4P) << P/2a 

which k identical with inequality (A3). Thus inequality (A3) is a sufficient condition 
for the absence of a gap in the velocity spectrum in both cases lkuAl >> 1 and 
IkuAl 1. lherefore no gap in the velocity spectrum of the domain wall appears if 
(A3) holds. 
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